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Abstract— Sketch-based measurement has emerged as a
promising solutions due to its high accuracy and resource
efficiency. Prior sketches focus on measuring single flow keys
and cannot support measurement on multiple keys. This work
takes a significant step towards supporting arbitrary partial key
queries, which aims to provide information for any key in the
predefined range of possible flow keys. The designed system,
CocoSketch, casts arbitrary partial key queries to the subset sum
estimation problem and makes the theoretical tools for subset
sum estimation practical. CocoSketch utilizes two techniques:
(1) stochastic variance minimization to significantly reduce per-
packet update delay, and (2) removing circular dependencies
in the per-packet update logic to make the implementation
hardware-friendly. This paper extends the conference version
by discussing how CocoSketch adapts to new measurement
requirements, including: (1) collecting the exact information of
specified flow keys, and (2) distributed measurement. CocoSketch
is implemented on five popular platforms (CPU, Open vSwitch,
Redis, P4, and FPGA). Experiment results show that compared
to baselines that use traditional single-key sketches, CocoSketch
improves average packet processing throughput by 27.2× and
accuracy by 10.4× when measuring six flow keys.

Index Terms— Sketch, arbitrary partial key query, P4, FPGA.

I. INTRODUCTION

NETWORK monitoring and measurement have been criti-
cal to various network management tasks, such as traffic
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engineering [2], [3], accounting [4], [5], [6], load balancing
[7], [8], [9], flow scheduling [10], [11], and anomaly
detection [12], [13], [14]. These tasks often require timely
and accurate estimates of the network flow metrics, e.g.,
heavy hitters [15], [16], [17], [18], flow size distribution [19],
or heavy changes [20], [21]. In response, recent efforts have
demonstrated that sketching algorithms (sketches) can estimate
these metrics with high fidelity at a high throughput using only
small amounts of resources [22], [23].

At a high level, existing sketches commonly focus on
estimating statistics defined over a single flow key. A flow
key can be a specific header field (e.g., SrcIP, DstIP),
a combination of fields (e.g., 5-tuple), or a subset of bits
in a field (e.g., any prefix in SrcIP). While recent efforts
on single-key sketches have made significant progress [22],
[24], [25], [26], [27], it is impractical to use these sketches
to measure multiple flow keys simultaneously. First, existing
sketches [24], [28] keep one independent sketch for each
key, making it hard to scale to even a handful of keys
given the limited compute/memory resources in commercial
switches [23], [29]. Second, they require operators to pre-
define the set of flow keys before the measurement starts,
which is impractical in diverse scenarios such as network
diagnosis and security [14], [30], [31], [32].

This paper defines a new class of problem called arbitrary
partial key query, which “late binds” what keys a sketch should
support. Specifically, operators only need to pre-define a broad
key range beforehand (called the full key kF ), and during query
time, they can still query the flow size of any key that is a
part of kF (called partial key). For instance, if the full key
kF is the 5-tuple, the system should estimate the flow size of
any partial keys of the 5-tuple, such as SrcIP and any prefix
of SrcIP.

An ideal system for arbitrary partial key queries should
meet following requirements: (1) fidelity (provable accuracy
guarantee on any partial keys), (2) resource efficiency (high
throughput using minimal memory), and (3) compatibility (on
various software and hardware platforms), Besides, it would
be better to be extensible, which will make the measurement
system adapt to new measurement requirements easily.

Unfortunately, existing solutions that might support arbi-
trary partial key queries fall short on at least one requirement.
R-HHH [28] reduces the overhead of updating multiple
sketches (one for each partial key) by selectively updating only
O(1) sketches per packet, but this technique will significantly
increase the memory usage needed to achieve the same error
bound. An alternative solution is to use a single-key sketch to
measure full-key flow sizes and recover partial-key flow sizes
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by aggregating full-key flows. However, prior work [33] has
shown that this approach might have large estimation errors.
Unbiased SpaceSaving (USS), a recent technique for subset
sum estimation [34], can be applied for arbitrary partial key
query. Given a set of items, each with a weight, the subset sum
estimation problem estimates the total weight of any subset
of items. The problem of arbitrary partial key queries can
be cast as the subset sum estimation problem: the size of a
partial-key flow e equals the total size of a subset of full-
key flows that match on the partial key with e. Unfortunately,
the update delay of USS grows proportionally with more flows
recorded in the system (on a scale of 104), so a straightforward
implementation would have low throughput on CPUs (§VIII-
E), and it cannot be supported by some resource-constraint
hardware [35].

This work presents CocoSketch (Cornucopia Sketch),
a sketch-based flow measurement system that supports
arbitrary partial key queries. In contrast to the baselines that
maintain multiple single-key sketches, CocoSketch achieves
provable accuracy guarantees for arbitrary partial key queries
but drastically reduces memory usage and update delay by
maintaining only one sketch. Moreover, CocoSketch can
be efficiently implemented on both software and hardware
platforms (e.g., Open vSwitch [36], Redis [37], PISA [38], and
FPGA [39]), and can adapt to new measurement requirements
easily.

CocoSketch share the theoretical basis with USS, and the
challenge of CocoSketch lies in how to practically apply
the theory of subset sum estimation to the partial key
query problem. CocoSketch utilizes two main techniques.
(a) Inspired by USS, the technique, stochastic variance
minimization is introduced to CocoSketch. It harnesses
“power-of-d choices” to drastically reduce the per-packet
update delay while still maintaining a low total variance
of size estimates on all flows. Theoretical analysis in §VI
shows that, like USS, estimation of CocoSketch on any
partial keys are unbiased and have bounded variances.
(b) Due to circular dependencies among the per-packet
update operations, naively implementing stochastic variance
minimization on programmable switches can be infeasible
(even when it runs on FPGA, the throughput is low).
To address the problem, CocoSketch further removes circular
dependencies by parallelizing the operations of stochastic
variance minimization in a way that incurs only minor
increases in estimation errors (less than 10% drop in
F1 score).

Due to the simplicity of the data plane design, CocoSketch
can easily adapt to new measurement requirements. This paper
discusses two common requirements. First, in addition to
arbitrary partial key query, a measurement system may be
required to track exact information of specified full flow
keys for debugging or performance analysis [40], [41], [42].
Second, in large-scale data centers the network measurement
system often consists of multiple measurement nodes, and
therefore should support distributed measurement. For the
former, a variant of CocoSketch named D-CocoSketch is
presented, which can track exact information for specified full
keys while still maintaining high accuracy for arbitrary partial
key query. For the latter, this work shows that CocoSketch

can be applied in a distributed manner and achieve arbitrary
partial key query for the whole network topology.

II. BACKGROUND AND MOTIVATION

A. Sketches for Network Measurement

Sketching algorithms [16], [17], [21], [22], [24], [25]
process data streams to estimate various statistics in an
online fashion. With provable and tunable accuracy-memory
tradeoffs, sketches can fit in network devices with diverse
resource constraints. Typically, research in sketches follows
a single-key paradigm: each packet is identified as a (key,
value) pair to be inserted into the sketch, where the key
is a flow identifier defined by one combination of packet-
header fields selected by the operator before the measurement
starts, and the value is the packet count or the byte count
of this flow. In network measurement, single-key sketches are
widely used in diverse applications [20], [21], [35], [43], [44],
[45], [46], [47], [48].

B. Arbitrary Partial Key Problem

In contrast to the single-key paradigm, this paper defines
a new class of problems called arbitrary partial key query,
which supports queries on multiple keys without the need to
pre-define which keys to measure. Instead, operators only need
to specify a full key that incorporates all partial keys that might
be queried in the future. The formal definition is presented as
follows.

Definition 1 (Partial Key): A key kP is a partial key of key
kF (denoted by kP ≺ kF ), if there is a mapping g(·) : kF →
kP , and for any flow e ∈ kP defined on key kP , there is

f(e) =
∑

e′∈kF ,g(e′)=e

f(e′)

where f(e) is a statistic (e.g., size) of flow e.
Definition 2 (Arbitrary Partial Key Query): Given a full

key kF and a metric function f , return the f(e) of any flow
e ∈ kP for any partial key kP ≺ kF .

This paper assumes f is a flow size function. For example,
if the full key is SrcIP, any of its prefix (e.g., /24 prefix) will be
a partial key. The size of a flow e for a partial key of /24 SrcIP
prefix (e.g., (56.49.82.∗)) equals the sum of the size of full-key
flows in the prefix (e.g., {(56.49.82.0), . . . , (56.49.82.255)}).
The problem of arbitrary partial key query enables a more
flexible way of querying flow statistics without specifying
which keys to query beforehand.
Use cases of arbitrary partial key query: The ability to
answer arbitrary partial key queries enables a broad spectrum
of potential use cases. In Trumpet [49], applications, such
as guiding rule placement [50], coflow scheduling [51], and
multi-key rate limiting [52], require estimation results over
many different keys. In security and diagnosis scenarios,
DDoS detection needs various metrics (e.g., heavy hitters,
distinct flows) over potentially many flow keys, including
SrcIP/DstIP, the 5-tuple, and any arbitrary prefixes of
them [14].
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TABLE I
OPTIMIZATION TARGETS FOR DIFFERENT SOLUTIONS

C. Existing Solutions and Limitations

One single-key sketch per key: One strawman to realize
arbitrary partial key queries is by creating one single-key
sketch (e.g., [24]) for each possible partial key. This method
does not scale to many keys because deploying and updating
many sketches simultaneously can cause significant storage
and update overheads. Recent work R-HHH [28] can reduce
the per-sketch operation overhead on multiple sketches (by
randomly selecting O(1) sketches to be updated per packet).
While this sampling-based approach improves the sketch
throughput in software, it will significantly increase resource
usage to reach the same error bound or lower the accuracy
given the same amount of memory space [28]. In hardware
switches such as Barefoot Tofino [38], its resource usage will
grow linearly with more sketches, so this approach cannot
support more than a handful of keys.

Besides, such solutions requires to pre-define the set of flow
keys before measurement starts. A single measurement task,
DDoS detection, may track large flows defined on tens of
flow keys, including SrcIP/DstIP, the 5-tuple, and arbitrary
prefixes of them [14]. Therefore, it is almost impossible to
cover all partial keys that are required by different tasks. Even
if it could, it would lead to unacceptable errors given limited
memory in hardware switches.
Full-key sketch with post recovery: An alternative solution
is to deploy a single-key sketch for the full key and use the two
following ways to recover the size of a partial-key flow from
the full-key flow information, though neither is ideal. (i) One
way is to recover the size of each partial-key flow by querying
and aggregating the sizes of all possible full-key flows that
belong to the partial-key flow, but the number of such full-key
flows can be prohibitively large: e.g., with the 32-bit SrcIP
as the partial key and the 104-bit 5-tuple as the full key,
one needs to query (2104/232)=272 full-key flows to estimate
merely one partial-key flow. (ii) The other way is, instead of
aggregating the estimates of all full-key flows, aggregating
only the full-key flows that are explicitly logged in the sketch.
Prior analysis [33], however, suggests that aggregating such a
subset of flows can yield high estimation bias and variance,
which is confirmed by evaluations in §VIII-E.
Subset sum estimation: A more promising approach is to
cast the arbitrary partial key query problem to the subset sum
estimation problem. As summarized in Table I, unlike single-
key sketches that minimize the maximum estimation error
on individual keys, subset sum estimation offers an unbiased
estimate on the sum of all (and any subset of) items with
minimum variance. It fits nicely with the design goal since
each partial-key flow size equals the total size of a subset of
full-key flows.

Unfortunately, existing work on subset sum estimation,
notably Unbiased SpaceSaving (USS) [33], is impractical for

network measurement. As will be elaborated in §III-A, USS
performs O(n) memory accesses on every arriving packet,
where n is the number of flows currently maintained in the
system and can be on the scale of 104. Such prohibitive per-
packet update overhead makes USS hard to keep up with the
line rate requirements on software platforms and infeasible to
run on some hardware platforms such as Barefoot Tofino [38].

D. New Measurement Requirements

Exact information of specified full flow keys. For network
measurement, it is often necessary to provide operators with
exact information for some full flow keys, which can be used
to examine the performance metrics and locate problems of
the upper-layer applications. For instance, with the knowledge
of the packet number sent and received by one application,
the operators can decide exactly how much bandwidth is
consumed and whether the network transmission becomes
the bottleneck. Existing widely-used network measurement
solutions, such as NetFlow [42] and sFlow [41], provides two
forms for measuring exact information: (1) users specify a set
of flow match rules (e.g., SrcIP = 10.0.0.1, DstIP = 10.0.0.*),
and the exact information of matched flows are measured; (2)
users specify a sample rate, and exact information of sampled
flows are measured.
Distributed measurement. In large-scale data center network,
it is impractical to build a measurement system with only
one measurement node. Directly selecting one server or one
forwarding device as the measurement node cannot cover
network-wide flows. Figure 2 shows a Fat-tree topology that
is widely used in data centers. Deploying CocoSketch on any
single node cannot cover flow A and B at the same time,
as they have different forwarding paths and pass different
switches. Mirroring all packets to one measurement node is
also impractical, as a single node cannot process all packets
in the data center given the huge volume of the network
traffic. As reported in [40], the volume of network traffic
has grown to hundreds of Terabytes per second and is still
growing rapidly. Therefore, a measurement system usually
deploys multiple measurement nodes, which work collectively
to provide consistent measurement results with full coverage.

III. OVERVIEW

In this section, an overview of CocoSketch, and its two key
ideas: stochastic variance minimization (§III-A) and removal
of circular dependencies (§III-B), is presented.
CocoSketch workflow: Before the measurement starts, the
operator defines a full key kF , of which any key that
might be queried will be a partial key. kF can be a large
range of packet header fields such as 5-tuple or application-
layer headers. Figure 1 shows the workflow of CocoSketch.
CocoSketch maintains a single sketch with d · l buckets (where
d and l are configurable parameters). On each arriving packet,
CocoSketch’s data plane updates the sketch in two logical
steps:
Step 1: Extract the full key e of the flow and use d hash
functions to map e to d buckets, each from an array of l
buckets.
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Fig. 1. Overview of the CocoSketch architecture, which composes of data plane and control plane.

Fig. 2. An example of fat-tree topology with 2 core switches, 4 aggregation
switches, 4 edge switches and 8 servers.

Step 2: Update the counters of the mapped buckets with the
packet size using stochastic variance minimization (explained
shortly).

At the end of each measurement window, CocoSketch’s
control plane will answer flow size queries defined on any
partial key kP ≺ kF , with two logical steps:
Step 3: Based on the sketch maintained by the data plane,
first recover the size of each recorded full-key flow.
Step 4: Aggregate the sizes of the recorded full-key flows to
infer the size of flows defined by the queried partial key kP .

The two technical ideas are discussed as follows.

A. Stochastic Variance Minimization

Variance minimization in Unbiased SpaceSaving: Before
describing the technique in CocoSketch, it is necessary to first
explain how Unbiased SpaceSaving (USS) [33] minimizes its
variance of flow size estimates and why it has a high update
delay. For each incoming packet with full-key flow e and
packet size w, (1) if e is already tracked in a bucket, then
USS increments the counter of e in this bucket by w, so that
variance is not increased; (2) otherwise, USS scans all buckets
to find the min-sized bucket counter Cmin, increments it by w,
and then replaces the flow key associated with the bucket with
e with probability w

Cmin
. As the number of memory accesses

per update is the same as the number of buckets (on a scale
of 104), USS is slow and has difficulty to be deployed on
hardware. How to reduce the update cost of USS while still
maintaining the high accuracy guarantees?
Reducing update delay: CocoSketch finds the smallest bucket
among the d hash-indexed buckets instead of all buckets,
increments the counter, and replaces the flow in the same
way as USS. CocoSketch sets d to be much smaller (e.g.,
2 to 4) than the number of buckets (e.g., 104), thus drastically
reducing the update delay.

Preserving estimation accuracy: Updating the bucket among
only d buckets per packet is still accurate under heavy-tailed
flow distribution, which is common in real world. The reasons
are twofold.
• First, for a large flow, the mapped counter is a quite
accurate estimate of its real flow size. This is because, like
in USS, its counter is mostly incremented by the same large
flow with a small chance of collision.
• Second, for small flows, like USS, CocoSketch spreads
out the small flows among the mapped buckets (like a “load
balancing” process) to control the per-flow variance.

B. Circular Dependency Removal

While stochastic variance minimization allows CocoSketch
to achieve high performance in software platforms, it cannot be
efficiently implemented in hardware platforms due to inherent
circular dependencies in its update operations. A typical
example is the Tofino architecture, and its constraints and
corresponding solutions are discussed as follows.
Constraints in RMT switches: As typical examples of RMT
(reconfigurable match-action table) switches, Tofino switches
use pipeline architecture. Each pipeline consists of multiple
stages, and importantly, each stage cannot access the memory
of any prior stages. Therefore, any sketch update algorithm
must follow a unidirectional workflow, i.e., data flow strictly
from the first stage to the last stage. Moreover, each pipeline
has a limited number (e.g., 12) of stages, and each stage
has limited memory (e.g., SRAM and TCAM) and computing
(e.g., ALU) resources.
Circular dependencies and their removal: Unfortunately,
stochastic variance minimization introduces two forms of
circular dependency as illustrated in Figure 3, making
it incompatible with the unidirectional workflow in RMT
switches. This work designs a hardware-friendly algorithm
(see details in §IV-B) to remove these dependencies for better
performance and resource efficiency in hardware.
• First, remove the circular dependency across buckets.
Instead of running one instance of stochastic variance min-
imization on d buckets, the hardware-friendly CocoSketch
runs d instances of stochastic variance minimization, each
performed on only one bucket. To control the errors, it uses
the median value among the d buckets as the final result.
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Fig. 3. Removing circular dependency for hardware-friendly design.

• Second, remove the circular dependency between the flow
key and its estimated size within each bucket. The hardware-
friendly CocoSketch simplifies the update logic, and puts the
flow key and the estimated size into separate stages. Thus,
the update process in one bucket can be pipelined.
While removing the circular dependencies might weaken

the accuracy guarantee, evaluations in §VIII-E demonstrates
that the accuracy drop is not significant (e.g., <10%).

IV. DETAILED DESIGN

A. Basic CocoSketch

Data structure: As shown in Figure 4, The sketch maintains d
arrays of l (key, value) pairs. Each (key, value) pair (or called
bucket) records a particular full key and its estimated flow size
(counter). Let Bi[j] (1 ⩽ i ⩽ d, 1 ⩽ j ⩽ l) be the jth bucket
of the ith array, and Bi[j].K and Bi[j].V be its key and value.
The d arrays are associated with d independent hash functions
h1(.), . . . , hd(.).
Basic CocoSketch insertion: Each incoming packet is
denoted as a pair of (e, w), where e is a particular full key,
and w is its increment size. To insert (e, w), CocoSketch first
maps e to d buckets (each from one of the d arrays) and
use stochastic variance minimization to select which bucket
to update. There are two cases: (1) if e matches the key
in any of the d buckets, increment the value of that bucket
by w and return; (2) otherwise, find the bucket with the
smallest value (e.g., the bucket in the kth array, Bk[hk(e)])
and update it as follows. CocoSketch increases Bk[hk(e)].V
by w. And then with probability w

Bk[hk(e)].V , CocoSketch
replaces Bk[hk(e)].K with e. If multiple buckets share the
same smallest size value, randomly select one to update.
§VI will formally analyze the fidelity of stochastic variance
minimization over arbitrary partial keys. Note that for each
incoming packet, the insertion logic guarantees that it only
updates the value of only one bucket and the key of at most
one bucket.
Example (Figure 4): To insert packet (e5, 1), CocoSketch
first uses two hash functions to map it to two buckets
with content (e5, 15) and (e8, 11). Because e5 is already
recorded in one of the buckets, CocoSketch simply increments
the corresponding value by 1 (from 15 to 16). To insert
packet (e3, 4), CocoSketch first maps it to the two buckets
with content (e6, 19) and (e2, 12). Since e3 is not recorded
in either bucket, CocoSketch identifies the bucket with the
smallest counter (i.e., (e2, 12)), increments the value by 4,

Fig. 4. Insertion example in basic CocoSketch (with d = 2).

and finally, with probability w
Bk[hk(e)].V = 4

16 , replaces the
key e2 with e3.

B. Hardware-friendly CocoSketch

To optimize the resource efficiency in hardware, the
hardware-friendly CocoSketch removes circular dependencies
in insertions.
Hardware-friendly insertion: The insertion step of each
array is independent of each other in hardware. The reason
is that the architecture of network hardware (e.g., FPGA)
is usually designed with diverse logical parts running in
parallel, and a hardware-friendly algorithm design should
leverage the parallelism to better utilize the resources.
For each packet, instead of proceeding stochastic variance
minimization over d buckets together, the hardware-friendly
CocoSketch updates each bucket independently, as if d = 1
in stochastic variance minimization: hardware-friendly CocoS-
ketch always increments the value of the mapped bucket
Bi[hi(e)] by w and replaces the key Bi[hi(e)].K with
probability w

Bi[hi(e)].V
.

C. Query for Arbitrary Partial Key

Query front-end: CocoSketch provides a front-end for
querying arbitrary partial key kP ≺ kF . CocoSketch first
builds a table with two columns (Full Key, Size) (i.e., a table
of estimated size of each recorded flow), by querying the
sketch on the recorded full-key flows. In the hardware-friendly
CocoSketch, since one flow may appear in multiple arrays,
it will take the median estimated size in different arrays as its
final estimated size.

The following SQL statement is the interface to query the
measurement result of partial key kP , where g is the mapping
from a full key to a partial key, as defined in Definition 1.
SELECT g(k_F), SUM(Size)
FROM table
GROUP BY g(k_F)

Examples of partial key query (Figure 5): Suppose that
the full key is (SrcIP, SrcPort), and the queried partial key is
SrcIP. CocoSketch first gets the full key result (left). Then,
CocoSketch aggregates the result based on the SrcIP fields
to get the partial key result (right). There are two full-key
flows which share the SrcIP 19.98.10.26, so CocoSketch adds
up their sizes and get the estimated size 1041 (520 + 521)
of partial-key flow 19.98.10.26. In contrast, there is only one
full-key flow with SrcIP 34.52.73.17, so the estimated size for
the partial-key flow 34.52.73.17 is 856.
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Fig. 5. Example queries on partial keys.

Fig. 6. The data structure of D-CocoSketch and running examples.

D. Qualitative Analysis

Compared with the baseline that builds one single-key
sketch for each partial key, CocoSketch has the advantage
in terms of memory efficiency and insertion throughput.
To provide the same error bound, such baseline consumes
O(K) memory, where K is the number of partial keys, while
the memory consumption of CocoSketch is independent of K.
For insertion, the baseline requires O(K) hash computations
and O(K) memory accesses, while CocoSketch requires O(1)
hash computation and memory access.

Compared with the baseline that builds a single-key
sketch with post recovery, CocoSketch is more efficient in
memory and query time. For single-key sketch such as CM
sketches [16], to provide the same error bound, the required
memory of such baseline is O(S), where S is the number
of full keys contained in the partial key. For CocoSketch,
the memory consumption is independent of S (see §VI-B).
The query time of such baseline is also O(S), while that of
CocoSketch is independent of S.

Compared with USS, as analyzed in §III-A, the time
complexity of insertion is O(n), where n is the number of
buckets, while for CocoSketch it is O(d), and d is much
smaller.

V. COCOSKETCH CAN DO MORE

CocoSketch can support addition requirements beside
arbitrary partial key query: (1) providing exact information
of specified full flow keys; (2) distributed measurement.

A. Requirements of Exact Information for Specified Full Keys

While the demand of exact information is common,
CocoSketch itself fails to meet the requirement. Therefore,
this work designs a variant of CocoSketch that can support
both partial key query and providing exact information of full
keys.
Data structure: D-CocoSketch, a variant of CocoSketch,
utilizes a d-left hash table to record full keys. As shown
in Figure 6, D-CocoSketch consists of two parts: the d-
left part and the CocoSketch part. The d-left part is
composed of h sub-tables, D1,D2,Dh, and each sub-table
has m buckets. The i-th sub-table is associated with a

hash function gi(·), which hashes a full key to {0, 1, · · · ,
m − 1}. The buckets record exact information about flows
that operators are interested in, including the full keys and
corresponding frequencies. The CocoSketch part is a one-
array hardware-friendly CocoSketch, which consists of a
bucket array B. Here the hardware-friendly CocoSketch is
chosen to support hardware deployment, because deploy-
ing measurement functionality in programmable switches
has shown huge benefits of high packet processing
speed [53].
Insertion: D-CocoSketch supports two modes: the sample
mode and the rule match mode. In the sample mode, users
specify a sample rate p, and D-CocoSketch samples flows
according to the sample rate p. For the incoming packet that
belongs to the sampled flows, D-CocoSketch first tries to
insert it in the d-left part. If the insertion fails, it will then
be inserted into the CocoSketch part. For unsampled packets,
they will be directly inserted in the CocoSketch part. In the
rule match mode, users specify the flow match rules. For the
incoming packets that match the rules, their insertion behavior
is the same as the sampled packets in the sample mode.
And the unmatched packets are the same as the unsampled
packets.

For the incoming packet that will be tried to insert to the d-
left part, it is denoted as (e, w), where e is the full key and w
is its incremental frequency size. D-CocoSketch sequentially
tries to insert (e, w) to the d-left hash tables. For the i-th hash
table Di, if the hashed bucket, D⟩[gi(e)], is empty or has the
same full key of e, then the frequency counter will be updated.
Otherwise, D-CocoSketch tries to insert it to the next (i+1)-th
hash table. This process stops once it is successfully inserted
to one of the hash tables.
Examples: As shown in Figure 6, when inserting packet
(e2, 1), it is sampled or matches the rules, so D-CocoSketch
tries to insert it in the d-left part. The hashed bucket in the
first sub-table has the same key of e2, so the insertion in the
d-left part succeeds, and the bucket is updated from (e2, 10)
to (e2, 11). When inserting packet (e3, 1), it is sampled or
matches the rules, so D-CocoSketch also tries to insert it in the
d-left part. However, the two hashed buckets in the sub-tables
are not empty and record different keys, so the insertion fails.
It will then be inserted in the CocoSketch part, following the
insertion of the hardware-friendly CocoSketch. When inserting
packet (e6, 1), it is not sampled or does not match the rules,
so D-CocoSketch directly inserts it in the CocoSketch part.
Query front-end: The query front-end of arbitrary partial
key for D-CocoSketch is similar to that of the CocoSketch.
The first step is to build a two-column table of (Full Key,
Size). As the flows that are inserted in the d-left hash
tables will not appear in the CocoSketch part, the hash
tables and the CocoSketch part are simply stitched together.
Note that D-CocoSketch uses one-array hardware-friendly
CocoSketch, so calculating median value is unnecessary. The
query interface on the built table is the same in §IV-C.

B. Requirements of Distributed Deployment

To achieve full coverage in the network measurement,
CocoSketch should be deployed in a distributed manner. The
challenge lies in how to let multiple CocoSketchs provide
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Fig. 7. An example of spine-leaf topology with 2 spine switches, 4 leaf
switches and 8 servers.

unbiased estimation collectively. The key idea is to utilize the
hierarchy of data center network topology to ensure unbiased
estimation for all flows.
Solution: Ideally, CocoSketches should be deployed on
multiple switches with a collective query method, which
should provide unbiased estimation for any flows in order to
support arbitrary partial key query. Formally, suppose there
are n CocoSketches deployed on n different switches, and
suppose the set of flows to be measured is F . Assume for any
flow f and any switch, either all of its packets pass through
the switch or none of them. Suppose for i-th CocoSketch, the
set of flows that pass through its corresponding switch and are
inserted in the sketch is Fi. Although it is generally difficult
to obtain an unbiased estimation from multiple CocoSketches,
it can be obtained when Fi are a partition of F , that is, the
following two conditions are met: (1) Fi ∩ Fj =,∀i ̸= j; (2)
∪n

i=1Fi = F .
The collective query front-end is to simply merge the tables

from all CocoSketches, and query results on the merged
table in the same way as single-node CocoSketch. As a
result, multiple CocoSketches make up “one big CocoSketch”.
We will provide formal proof in §VI-C.

Thanks to the hierarchy in the data center network, the
distributed deployment of CocoSketch that satisfies the flow
partition can be easily found. The topology of data center
network is usually a multi-rooted tree, and the switches are
located in different hierarchies. This work assumes the data
center uses ECMP as the routing protocol, which force one
flow to choose only one switch as the entry of the higher
layers. CocoSketch can be deployed on the lowest layer where
all of the flows will pass through. In this way, the packets of
each flow will be inserted in exactly one of the switches, and
each packet is inserted exactly once. For instance, in a two-
level spine-leaf topology shown in Figure 7, CocoSketches can
be deployed on the switches of the leaf layer. Similarly, in a
three level Fat-Tree topology, CocoSketches can be deployed
on the switches of the edge layer.

An intuitive way to understand the distributed deployment
of CocoSketch is that, it can be thought as a “one big logical
CocoSketch” that is physically stored on multiple switches.
There are special hash functions that hash packets to one
specific position in one specific block, which is determined by
both the forward path of the packets and the hash functions
in the passed switches. The insertion and query operations
remain the same, so it can work in a distributed manner.

VI. ANALYSIS

A. Stochastic Variance Minimization

Variance minimization for subset sum estimation: Let f(e)
be the real size of the full key flow e, and f̂(e) be its estimated
size. Because USS processes one packet at a time, it minimizes

the increment on the sum of variance caused by each insertion,
which is shown as follows.

minimize
∑

e

∆
(
f(e)− f̂(e)

)2

(1)

Stochastic variance minimization for d = 1: First, consider
the simplest case when CocoSketch has only one array and one
associated hash function (d = 1). Suppose that the incoming
packet is (ei, w), and it is mapped to the bucket whose
recorded key and value are ej and fj . To optimize Eq. (1),
the key point is how to update the mapped bucket to (e′, f ′)
in a way that minimizes the increment of variance for each
insertion.

Theorem 1: The solution to optimize Eq. (1) is

(e′, f ′) =


(ei, fj + w), w.p.

w

fj + w

(ej , fj + w), w.p.
fj

fj + w

(2)

Proof: Remind that the incoming packet is (ei, w), and it
is mapped to the bucket recording key value pair (ej , fj). Then
CocoSketch updates the mapped bucket to (e′, f ′) to optimize
Eq. (1). Note that CocoSketch only changes the estimated size
of full key ei and ej , so the variance increments of all other
full keys are 0. If a full key is not recorded, its estimated size
is 0. Otherwise, its estimated size is the corresponding value in
the bucket. Obviously, if ei = ej , CocoSketch directly updates
the mapped bucket to (ej , fj + w), and there is no increment
of variance. If ei ̸= ej , to keep unbiasedness, suppose the
bucket is set to (e′, f ′) = (ei, w/p) with probability p, and
set (e′, f ′) = (ej , fj/(1 − p)) with probability 1 − p. The
increment of variance is that∑

e

∆
(
f(e)− f̂(e)

)2

= p ·

((
w

p
− w

)2

+ f2
j

)

+ (1− p) ·

(
w2 +

(
fj

1− p
− fj

)2
)

=
w2

p
− w2 +

f2
j

1− p
− f2

j

Therefore, CocoSketch achieves the minimum variance when
p = w/(fj +w). Based on the formula of p, Eq. (2) is proved.

□
Based on the Eq. (2), the following theorem holds,
Theorem 2: The minimum increment of variance sum to

update the bucket (ej , fj) is∑
e

∆
(
f(e)− f̂(e)

)2

=
{

2 wfj , ei ̸= ej

0, ei = ej
(3)

Proof: Based on the proof of Theorem 1, if ei = ej , the
variance increment is 0. If ei ̸= ej ,∑

e

∆
(
f(e)− f̂(e)

)2

= 2 wfj

□
Stochastic variance minimization for d > 1: For d > 1,
consider the ith mapped bucket. If ei = ej , the increment of
variance is 0. If ei ̸= ej , the increment of variance is 2wfj .
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Therefore, CocoSketch should first update the bucket with the
same full key, or otherwise update the bucket with smallest
value.

B. Error Bound
Lemma 3: For any flow e of any key k ≺ kF , in the basic

CocoSketch,

E
[
f̂(e)

]
= f(e)

Proof: The first step is to prove that, for any flow e of
full key kF , in the basic CocoSketch, E

[
f̂(e)

]
= f(e). Let

f̂ t(e) be the estimated size of e before tth insertion. Suppose
that the incoming packet is (ei, w) for the tth insertion. The
unbiasedness is proved by showing that the expected increment
to f̂ t(e) is w if e = ei and 0 otherwise.

If e = ei, there are two cases. Case 1: If e is recorded,
the estimated size will be increased by w. Case 2: If e is not
recorded, suppose that the mapped bucket whose value is the
smallest is in the kth array. The expected increment is

(Bk[hk(e)].V + w) · w

(Bk[hk(e)].V + w)
= w

If e ̸= ei, there are two cases. Case 1: If e is recorded
and the corresponding bucket will be updated, the expected
increment is(

f̂ t(e) + w
)
· f̂ t(e)(

f̂ t(e) + w
) − f̂ t(e) = 0

Case 2: Otherwise, the estimated size does not change.
As a result, the basic CocoSketch achieves unbiasedness for

the full key. Then, for any flow e of any key k ≺ kF ,

E
[
f̂(e)

]
= E

 ∑
k(a)=e

f̂(a)

 =
∑

k(a)=e

f(a) = f(e)

□
Let f̂i(e) be the estimated size of flow e in the ith array of

the hardware-friendly CocoSketch.
Lemma 4: For any flow e of any key k ≺ kF , in the

hardware-friendly CocoSketch,

E
[
f̂i(e)

]
= f(e)

Proof: Note that in a bucket, the probability of occupying
the bucket is proportional to the size of each flow. Therefore,
after the insertion process,

P [Bi[hi(e)].K = e] =
f(e)

Bi[hi(e)].V

Based on the probability, the expectation of the estimated size
in each array is,

E
[
f̂i(e)

]
=

f(e)
Bi[hi(e)].V

·Bi[hi(e)].V = f(e)

□
Lemma 5: For any flow e of any key k ≺ kF , in the

hardware-friendly CocoSketch,

Var
[
f̂i(e)

]
=

f(e) · f(e)
l

Proof: In the ith array, let Ii,j(e) be 1 if k(Bi[j].K) = e
and 0 otherwise. Define that

Ci,j(e) =
∑

k(a)=e
hi(a)=j

f(a), Ĉi,j(e) = Ii,j(e) ·Bi[j].V

There is

Var
[
Ĉi,j(e)

]
= Ci,j(e) · E [Bi[j].V − Ci,j(e)]

= Ci,j(e) ·
f(e)

l

Cov
[
Ĉi,j(e), Ĉi,k(e)

]
= 0, j ̸= k

Then, the variance for the ith array is that

Var
[
f̂i(e)

]
= Var

 l∑
j=1

Ĉi,j(e)

 =
l∑

j=1

Ci,j(e) ·
f(e)

l

=
f(e) · f(e)

l

□
Theorem 3: Let l = 3 · ϵ−2 and d = O(log δ−1). For any

flow e of arbitrary partial key kP ≺ kF ,

P

[
R(e) ⩾ ϵ ·

√
f(e)
f(e)

]
⩽ δ

Proof: Let Ri(e) be the relative error of flow e based on
its estimated size f̂i(e) in the ith array of the hardware-friendly
CocoSketch. According to the variance and Chebyshev’s
inequality,

P

[
Ri(e) ⩾ ϵ ·

√
f(e)
f(e)

]
= P

[∣∣∣f̂i(e)− f(e)
∣∣∣

⩾ ϵ ·
√

f(e) · f(e)
]

⩽
Var

[
f̂i(e)

]
ϵ2 · f(e) · f(e)

= ϵ−2 · l−1

By setting l = 3 · ϵ−2,

P

[
Ri(e) ⩾ ϵ ·

√
f(e)
f(e)

]
⩽

1
3

Because the final estimated size is the median result, if the
R(e) ⩾ ϵ ·

√
f(e)/f(e), at least d/2 Ri(e) must be larger than

ϵ ·
√

f(e)/f(e). Based on the Chernoff’s inequality, setting
d = O(log δ−1) can make such probability reduce to δ. □

C. Extensions of CocoSketch

This section gives the proof of the unbiasedness for the
D-CocoSketch and the distributed CocoSketch.

Theorem 4: For any flow e of any key k ≺ kF , in the
D-CocoSketch,

E
[
f̂(e)

]
= f(e)
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Proof: For any flow e, it will be inserted to either the
dleft part or the CocoSketch part. If the flow e is inserted to
the dleft part, as the dleft part is a hash table, the recorded
frequency is fully accurate. If the flow e is inserted to the
CocoSketch part, according to Lemma 3, the result is also
unbiased. Therefore, the estimation result of D-CocoSketch is
unbiased. □

Theorem 5: For any flow e of any key k ≺ kF , in the
distributed CocoSketch,

E
[
f̂(e)

]
= f(e)

Proof: For the distributed deployment of CocoSketchs,
the flow e will appear and only appear in one of the
CocoSketchs. Suppose the packets of flow e are inserted to
CocoSketch C, and the estimated frequency of flow e on
sketch C is f̂C(e). As the flow e is not inserted in any other
sketches, the key e will not appear in the table of query front-
end for other sketches. Therefore, the estimated frequency
is completely dependent on the sketch C. As CocoSketch
provides unbiased estimation,

E
[
f̂(e)

]
= E

[
f̂C(e)

]
= f(e)

□

VII. DEPLOYMENT PLATFORMS

CocoSketch has been implemented on five platforms:
x86 CPU, Redis [37], Open vSwitch (OVS) [36], Xilinx
FPGA [39], and Barefoot Tofino [38]. In this section,
the implementation of basic CocoSketch on CPU, Redis
and OVS and hardware-friendly CocoSketch on FPGA and
Barefoot Tofino is described. In addition, the deployment of
CocoSketch on the wireless devices is discussed.

A. Basic CocoSketch Implementation
CPU Implementation: Basic CocoSketch is implemented
(§IV-A) using C++. The hash functions are implemented
using the 32-bit Bob Hash [54] with different hash seeds. Its
implementation and evaluation is on a machine with one 4-
core processor (8 threads, Intel(R) Core(TM) i5-8259U CPU
@ 2.30GHz) and 16 GB DRAM memory. The processor has
64KB L1 cache, 256KB L2 cache for each core, and 6MB L3
cache shared by all cores.
Redis implementation: Basic CocoSketch is implemented as
a module in the Redis, where user can use the provided API
to create CocoSketch, insert full keys and query for aggregate
sum of partial keys. MurmurHash [55] is used as the hash
function. The Redis implementation is evaluated on a machine
with dual 18-core CPUs (36 threads, Intel(R) Core(TM) i9-
10980XE CPU @ 3.00GHz) and 125GB DRAM memory.
OVS Implementation: CocoSketch is implemented on OVS
v2.12.1 with DPDK 18.11.10. Ring buffers are used as the
shared memory to connect the datapath in OVS and the
measurement process of the CocoSketch. When a packet enters
the datapath, its packet header will be written into ring buffers.
The measurement process continuously reads packet header
information from ring buffers by polling. The testbed has two
servers that are directly connected. One server runs OVS, and
another server generates high-speed TCP traffic using pktgen-
dpdk (version 3.7.2). Each server is equipped with a Mellanox

ConnectX-3 40G NIC, an Intel Core i5-8400@2.80GHz CPU,
and 16GB DRAM. To accelerate the process, multiple (e.g.,
4) Rx queues are assigned for the DPDK receive port in OVS.
Different Rx queues are pinned to different cores and are
polled by different Poll Mode Driver threads.

B. FPGA Platform

FPGA background: FPGAs [39] are based on a matrix of
configurable logic blocks (CLBs) connected via programmable
interconnects. The main resources of FPGA include Slice
LUTs, Slice Registers, and Block RAM Tile. Slice LUTs are
lookup tables, which are used to implement combinational
logic. Slice Registers are mainly used as cache resources.
Block RAM Tile is on-chip block storage, which is the main
storage resource.
FPGA implementation: The hardware-friendly version (§IV-
B) is implemented on a Xilinx Alveo U280 [39] with full
pipelining. The algorithm is divided into four main parts:
hash computation, accessing arrays of value, replacement
probability calculation, and accessing arrays of key. In FPGA,
accessing one BRAM Tile in FPGA needs two cycles while
other operations such as hash computation and probability
calculation take one cycle. The implementation pipelines all
the key/value memory accesses to improve the clock rate.
To replace the key in a bucket with some probability p ∈ (0, 1],
the implementation first generates a 32-bit random number
rand, then replaces the key recorded only if rand× 1

p < 232.

C. RMT Platform

P4 background: In RMT-based programmable switches [56],
each incoming packet will undergo a packet header parser,
several pipeline stages, and a deparser. Each stage has a Match-
Action Table, where the corresponding actions are performed
according to which entry the packets match. Moreover, a small
amount of physical resource is allocated to each stage,
including SRAM, TCAM, Map RAM, and stateful ALUs.
The Map RAM can be used to convert ordinary SRAMs into
counters/meters/registers, and the stateful ALUs are used to
execute arithmetic operations on the stateful memory.
P4 implementation: A P4 prototype of the hardware-friendly
CocoSketch is implemented on the Tofino switch [38]. The
difficulty of implementing the hardware-friendly CocoSketch
on the Tofino switch lies in the calculation of probability.
Because the multiplication operation between two variables
is not supported, the implementation uses a different way
to calculate the probability. In P4, to replace the key
recorded with probability 1

value , the implementation first
generates a 32-bit random number rand and then replaces
the key recorded only if rand < 232

value . Note that the math
unit provided by the current Tofino switch only supports
approximate division between a constant and a variable. It does
the approximate division based on the highest 4 bits of the
variable. Given the real replacement probability p = 1

value ,
the difference between the real probability and the calculated
probability is usually below 0.1 p. For example, if the real
replacement probability is 1

17 = 5.9%, the difference will be
only 0.37%. Thus, the approximate division can still calculate
the probability with high accuracy.
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Fig. 8. Performance of heavy hitter detection under different numbers of partial keys and different memory.

TABLE II
METRICS FOR EVALUATIONS

D. Wireless Platform

Prior works [57], [58], [59] have explored the application
of sketching algorithms on wireless platforms. Specifically,
Joltik [59] deploys sketching algorithms on wireless sen-
sors and base stations by implementing sketches on the
STM32L476RGT6U MCU in the NUCLEO-L476RG board.
Their code is implemented in C using Mbed compiler,
which supports both C and C++. As CocoSketch can be
implemented in C++, it can also be deployed on wireless
platform in the same method.

VIII. EVALUATION

A. Experimental Setup
Traces: The experiments use two real-world traces. (1)
CAIDA: The traces collected in the Equinix-Chicago monitor
from CAIDA in 2018 [60]. In the evaluation, the trace with a
monitoring interval of 60s is used, which contains around 27M
packets. (2) MAWI: The traffic traces collected by MAWI [61].
In the evaluation, the trace with a monitoring interval of 15min
is used, which contains around 13M packets.
Metrics: The six performance metrics in Table II are
evaluated, which are well acknowledged as the metrics of
the accuracy and packet processing efficiency for sketching
algorithms by the research community [21], [22], [23], [24],
[25], [26], [27]. The resource numbers are reported in
hardware deployments.
Setting: By default, the experiments set d = 2 in CocoSketch,
measure 6 different partial keys (5-tuple, (SrcIP, DstIP) pair,
(SrcIP, SrcPort) pair, (DstIP, DstPort) pair, SrcIP, and DstIP) on

the CAIDA traces, set the heavy hitter threshold to be 10−4 of
the total size of traffic, and set the total memory at 500KB. The
average metrics on these keys are reported. For the CocoSketch
and USS, one sketch with 500KB memory is used to measure
the full key (5-tuple) and results of other keys are got by
aggregation. Other single-key algorithms uses one sketch for
each key, as in prior work [24], [28], [62].

B. Accuracy
The basic CocoSketch (“Ours” in the figures) is compared

with other sketches in three tasks (Heavy Hitters, Heavy
Changes, and HHH) with the six partial keys described in
§VIII-A. The baselines include Count sketch [17] with a
min-heap (C-Heap), Count-Min sketch [16] with a min-heap
(CM-Heap), SpaceSaving (SS) [15], the software version
of the Elastic sketch [22], UnivMon [24], and Unbiased
SpaceSaving (USS) [33]. In particular, USS uses an optimized
implementation whose update process is enhanced by a hash
table and a double-linked list. (Throughput of a naive USS
implementation is < 0.1 Mpps.) A hash table is used to check
whether a flow is already tracked in the sketch; and a double-
linked list is maintained to rank buckets by their counters so
that the minimal bucket can be found quickly. In contrast,
CocoSketch does not require extra memory.
Heavy hitter detection with different numbers of keys
(Figures 8(a)-8(c)): CocoSketch achieves the best overall
accuracy. Even if only one partial key is measured,
CocoSketch performs no worse than other algorithms. When
the number of keys grows, CocoSketch always maintains a
higher accuracy than the baseline algorithms. Both the recall
rate and the precision rate of CocoSketch are above 95%
regardless of the number of tracked partial keys. Compared
to all baseline algorithms, the ARE of CocoSketch is 9.59×
better on average. The precision rate of USS is 64% lower
than that of CocoSketch. This is because USS’s auxiliary data
structures (hash table + a variant of double-linked list) occupy
up to 4× memory space.
Heavy hitter detection under different memory configura-
tions (Figures -8(d)-8 (e)): CocoSketch also achieves higher
accuracy with smaller memory footprints when measuring
the 6 keys. With only 300KB memory, the F1 Score of
CocoSketch is above 90%, while others are usually below
65%. The ARE of CocoSketch is around 10.43× better
than the baseline algorithms. Note that SS is not shown in
Figure 8(e) because its ARE is too large (> 0.4).
Heavy change detection with different number of keys
(Figures 9(a)-9(b)): Similar to that of heavy hitter detection,
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Fig. 9. Heavy change detection under different numbers of partial keys.

Fig. 10. 1-d HHH with different memory constraints.

Fig. 11. 2-d HHH with different memory constraints.

with an increasing number of keys, the CocoSketch maintains
its high fidelity, while the accuracy of other algorithms drops
significantly. Both the recall rate and the precision rate of
CocoSketch are higher than 95%, regardless of the number of
tracked partial keys. When measuring 6 keys, the recall rate
of the CocoSketch is around 71%, 62%, 23%, and 70% higher
than that of C-Heap, CM-Heap, Elastic Sketch, and UnivMon,
respectively.
1-d HHH detection with different memory (Figure 10):
1-d HHH detection evaluates the source IP hierarchy in bit
granularity (32 prefixes + 1 empty key). The basic CocoSketch
is compared with R-HHH [28] only, because the throughput of
other baselines is too low to measure these many keys. With
only 500KB memory, the F1 Score of CocoSketch is higher
than 99.5%. For R-HHH, even with 2.5MB memory, its F1
Score stays around 50%. The ARE of CocoSketch is about
1902× smaller than that of R-HHH.
2-d HHH detection with different memory (Figure 11): 2-d
HHH detection evaluates source/destination IP hierarchies in
bit granularity (33×33 = 1089 keys). With 5MB memory, the
F1 Score of CocoSketch is higher than 99.8%. R-HHH uses
more than 5MB memory in this experiment, since it cannot
work with smaller memory. Even with 25MB memory, its F1

Fig. 12. Experiment results on the MAWI dataset.

Fig. 13. Processing speed in CPU platform.

Score is about 16%. The ARE of CocoSketch is about 39843×
smaller than that of R-HHH.
Experiments on MAWI traces (Figure 12(a)-12(b)): The
evaluation of heavy hitters detection and heavy changes
detection is also conducted on MAWI traces. CocoSketch
maintains high accuracy. When tracking more than two partial
keys, CocoSketch achieves over 90% F1 Score and is better
than all baselines.

C. Software Platforms
In this section, the throughput of the basic CocoSketch

(“Ours” in the figures) is compared with other baseline
algorithms.
Throughput in CPU (Figure 13(a)): The memory configura-
tion in this experiment is the same as that in the heavy hitter
detection (§VIII-B). The evaluation uses single-thread packet
processing throughput. The throughput of both CocoSketch
and USS are not affected by the number of partial keys
measured, while the throughput of other algorithms decreases
with the number of partial keys increases. The throughput
of CocoSketch is around 23.7 Mpps/core. When measuring
6 partial keys, its throughput is around 27.2 times higher than
others.
95th percentile CPU cycle (Figure 13(b)): Similar to the
throughput in CPU, the CPU cycle of other algorithms
increases with the number of partial keys increasing. When
measuring 6 partial keys, the number of CPU 95th percentile
cycles of CocoSketch is around 18.6, 3.8, 29.2, and 3.0 times
smaller than that of SS, Elastic Sketch, UnivMon, and USS,
respectively. Although the throughput of USS is also not
affected by the number of partial keys measured, its throughput
is lower because the auxiliary data structures (hash table + a
variant of double-linked list) still need many memory accesses.
Throughput in OVS (Figure 14(a)): The throughput of
the CocoSketch increases with the number of threads. With
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Fig. 14. Resource usage and throughput on different platforms.

Fig. 15. Varying d’s in the basic CocoSketch.

two or more threads, CocoSketch reaches the speed limit of
the evaluated 40Gbps NIC. CocoSketch incurs a small CPU
overhead (< 1.8%).
Throughput in Redis (Figure 14(b)): The throughput of
the CocoSketch in Redis is not affected by the memory
consumption. The reason is that Redis requires to send
requests to the Redis server, and the processing speed of
CocoSketch will not be the bottleneck. Therefore, the cache
utility of CocoSketch has little effect on the throughput. The
experimental results show that CocoSketch in Redis has a
throughput of around 0.3 Mpps.

D. Hardware Platforms
In this section, the hardware-friendly CocoSketch (Ours)

is compared with Elastic Sketch [63]. Elastic Sketch has
multiple versions designed for different platforms [22], each
has a different performance. The memory configurations of
evaluated sketches guarantee 90% F1 Scores in heavy hitters
detection (via accuracy experiments).
Throughput in FPGA platform (Figure 14(c)): Hardware-
friendly CocoSketch achieves about 5 times higher throughput
than basic CocoSketch. With 2MB memory, the hardware-
friendly CocoSketch is expected to achieve 150 Mpps, while
the basic CocoSketch only reaches around 30 Mpps with a
significantly lower clock frequency.
Resource usage in FPGA platform (Figure 14(d)): In the
figure, “Elastic” indicates the resources used by Elastic Sketch
when measuring 1 partial key, and “6*Elastic” indicates the
resources used by Elastic Sketch when measuring 6 partial
keys. CocoSketch uses fewer resources than that of Elastic
Sketch. When measuring 6 partial keys, the slice registers
that the CocoSketch needs are around 45 times smaller than
Elastic Sketch. On FPGA platform, the bottleneck of multiple
Elastic Sketches lies in the Block RAM Tile. When measuring
6 partial keys, the Block RAM Tile usage in Elastic Sketch is
34%, while CocoSketch only needs 5.8%.
Resource usage in P4 platform (Figure 14(e)): The figure
shows the ratio of the resources used by algorithms to the

Fig. 16. CDF of absolute error under different d values.

Fig. 17. (a) Different versions of CocoSketch, and (b) CocoSketch vs.
full-key sketch baselines.

total resources of 12 stages in the Tofino switch. In the
figure, “4*Elastic” indicates the resources used by Elastic
Sketch when measuring 4 keys. Note that a Tofino switch data
plane can implement at most 4 Elastic sketches at the same
time due to the resource constraint. CocoSketch uses fewer
resources than Elastic Sketch. When measuring 6 partial keys,
CocoSketch only needs 6.25% Stateful ALUs and 6.25% Map
RAM. On P4 platform, the bottleneck of deploying multiple
Elastic sketches lies in the Stateful ALUs. Elastic Sketch needs
18.75% Stateful ALUs in measuring 1 partial key and thus can
measure up to 4 partial keys (75% Stateful ALUs and 30.56%
Map RAM) in the device.

E. Microbenchmark
In this section, the performance under different parameter

settings and different versions of CocoSketch is shown.
Varying d in the basic CocoSketch (Figures 15 -16(a)): The
memory size is fixed at 500KB, and the performance under
different d is shown by the accuracy of heavy hitters detection.
When the value of d decreases from the maximum (the total
number of buckets), the F1 Score decreases only marginally:
95.3% (d = 2) and 96.9% (d = 3). On the other hand, the
throughput at d = 2 is 23.7 Mpps and at d = 3 is 17.5 Mpps,
whereas when d is the total number of buckets, the throughput
drops to below 0.1 Mpps. Note that CocoSketch becomes USS,
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Fig. 18. Performance of D-CocoSketch under different memory consumption.

when d is the total number of buckets, so the figures use “USS”
to denote CocoSketch with the maximum d value.
Varying d in the hardware-friendly CocoSketch (Fig-
ure 16(b)): Since in hardware platforms different arrays
run independently and in parallel, the value of d in
hardware-friendly CocoSketch will not affect the throughput
of CocoSketch. To show the performance difference, the
experiment fixes the memory size at 500KB and shows the
CDF of error under different d, i.e., for each distinct flow e,
calculating its error |f̂(e)− f(e)| and getting the distribution
of error. The results show that, with a larger d, CocoSketch
has a small error with a higher probability, while its worst
case is worse than others. Specifically, the probability that the
error is smaller than 70 for d = 1 is 95.1%, while it is 96.5%
for d = 3. However, the worst 0.1% error for d = 1 is 1873,
while it is 2358 for d = 3. Such results match the error bound
derived in Theorem 3.
Different versions of CocoSketch (Figures 17(a)): The
experiments compare the F1 Score of three versions of
the CocoSketch on the heavy hitters detection: the basic
CocoSketch used in software platforms, the hardware-friendly
CocoSketch used in FPGA (without approximation on prob-
ability calculation), and the hardware-friendly CocoSketch
used in P4 (with approximation on probability calculation).
The basic CocoSketch performs better than the hardware-
friendly CocoSketch, though the accuracy gap between them
is less than 10%. With 1MB memory, the hardware-friendly
CocoSketch also achieves F1 Score higher than 90%. The
accuracy gap between the hardware implementations in

Fig. 19. The effect of the memory ratio r on D-CocoSketch.

Fig. 20. The effect of sample rate p in the sample mode.

FPGA and P4 is smaller than 1%, which indicates that the
approximate division technique used in the P4 implementation
(§VII-C) has negligible impact on the accuracy.
Comparison with full-key sketch (Figure 17(b)): To
compare CocoSketch to different strawman solutions shown
in §II-C, The experiment measures two keys, SrcIP (full
key) and its 24-bit prefix (partial key), and shows their ARE
respectively. The total memory is fixed at 6MB and the ARE
is calculated based on all distinct flows. CocoSketch achieves
high accuracy on the full key and partial keys, where the ARE
is smaller than 0.02. For “2*Elastic” (one Elastic Sketch for
each key), the ARE of both full key and partial key are around
0.3. For “Lossy” (recovering the partial key only based on
the recorded flows in the heavy part), the ARE of full key is
around 0.14, while the ARE of partial key is around 0.94. For
“Full” (recovering the partial key by querying all full keys in
the corresponding set), the ARE of full key is around 0.14,
while the ARE of partial key larger than 1.
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Fig. 21. (a)-(b): the effect of the matched top-k heavy-hitter number for D-CocoSketch; (c)-(d): evaluations of CocoSketch in the distributed scenario.

F. D-CocoSketch

This section shows the evaluation of the performance
of D-CocoSketch under different memory consumption and
compare it with hardware-friendly CocoSketch. The effect of
different parameter settings is also evaluated, including the
ratio of the CocoSketch part memory to the total memory r,
and the number of sub-tables in the dleft part h, the sample
rate p in the sample mode, and the number of matched flows in
the rule match mode. All experiments use CAIDA traces and
evaluate heavy hitter detection on six partial keys. For the rule
match mode, top-k heavy hitters of the full keys are selected
as the matched flows. Without specific discussion, the number
of sub-table is set to 2 and the ratio of CocoSketch part is set
to 0.8. In the sample mode, the sample rate is set to 0.006,
and in rule match mode, the number of matched flows K is
set to 8000. The total memory is set to 1000KB in default.
The performance of D-CocoSketch under different
memory (Figure 18): The experimental results show that, D-
CocoSketch can achieve comparable accuracy with hardware-
friendly CocoSketch, while providing exact information
for tracked flows. When the memory consumption grows
from 600KB to 1000KB, compared with hardware-friendly
CocoSketch that consumes the same memory, the increase of
ARE is less than 22.52%, and the drop of F1 score is less than
3.37%. The ratio of tracked flows ranges between 0.64 and
0.84 in the sample mode, and between 0.64 and 0.83 in the
rule match mode. The reason why D-CocoSketch in the rule
match mode improves accuracy is that, top-k heavy hitters of
full keys is used as matched flows, and in CAIDA traces the
heavy hitters of full keys contribute most to the heavy hitters
of partial keys.
The effect of r (Figure 19): The experiments vary the
ratio r of the CocoSketch part from 0.5 to 0.9, and evaluate
the D-CocoSketch on the accuracy of heavy hitter detection
and its ability to track exact information. As shown in the
figure, as the memory ratio of the CocoSketch part grows, the
accuracy gap between D-CocoSketch and hardware-friendly
CocoSketch reduces, while the number of tracked flows also
reduces.
The effect of the sample rate p (Figure 20): The sample rate
varies from 0.003 to 0.007. The experimental results show that,
the sample rate has little effect on the accuracy, while the ratio
of tracked flows decreases as the sample rate increases. When
the sample rate increases from 0.003 to 0.007, the ratio of
tracked flows has a 18% drop, and the ARE ranges between
0.123 and 0.126.
The effect of the matched top-k flow number (Figure 21(a)
- 21(b)): In the rule match mode, the number of match flows

varies from 5000 to 9000, and the experimental results are
similar to those in the sample mode. The results show that,
when the number of matched flows increases from 5000 to
9000, the ratio of tracked flows has a 16% drop, and the ARE
ranges between 0.031 and 0.035.

G. Distributed Measurement

The evaluation simulates distributed measurement with a
multi-threading program, where one thread simulates the
insertion of CocoSketch in one switch. The experiment uses
the CAIDA trace, and for each flow a random switch is
selected as its measurement node, where all of its packets
are inserted. The accuracy and throughput of CocoSketch is
evaluated in the distributed measurement
Experimental results (Figure 21(c) - 21(e)): The experimen-
tal results show that, the accuracy of distributed deployment
of CocoSketch is close to that of the single-node deployment.
As the number of switches grows from 1 to 16, the fluctuation
of ARE is less than 7.2%, and the fluctuation of F1 score is less
than 0.5%. This is because, the distributed deployment strategy
is equivalent to divide a big CocoSketch into blocks and use a
special hash function to hash a subset of flows into one block.
The distribution of flows in the CocoSketch is still uniform and
thus has good performance. For throughput, as the number of
switches grows from 1 to 8, the throughput increases by up to
1.6×. The throughput may drop when the number of switches
grows from 8 to 16, possibly due to the schedule overhead.

IX. CONCLUSION

Sketching algorithms are extensively studied in network
measurements. However, sketching over multiple flow keys is
far from ideal for serving as a viable solution for software and
hardware network platforms. This paper presents CocoSketch,
a sketch-based measurement approach that accurately answers
arbitrary partial key queries. Leveraging stochastic variance
minimization, the data plane algorithms in CocoSketch run at
high speed regardless of the number of partial keys measured,
significantly outperforming existing sketches in terms of CPU
performance and memory efficiency. By further removing
circular dependencies, CocoSketch becomes hardware-friendly
for programmable switches and FPGA. Moreover, CocoSketch
can support additional requirements while maintaining high
accuracy for partial key queries. Experiments demonstrate the
performance of CocoSketch by comparing it with a variety of
sketches under real-world traces.
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